
C:

r-

roe
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5750--95-9749 :

Embedded Training Tools for
Large Real-Time Systems
DENNIS PATRICK MCGRODER

Advanced Techniques Branch
Tactical Electronic Warfare Division

September 25, 1995

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 25, 1995

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Embedded Training Tools for Large Real-Time Systems

6. AUTHOR(S)

Dennis Patrick McGroder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRL/FR/5750--959749

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command
Washington, DC 20363-5100

11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A systematic and organized approach to training new computer operators on large workstation-based real-time systems is in
order due to the complexity of advanced multifunctioned software in use and under development today. User friendly graphical
interfaces are widely used for the system functions themselves, yet the job of training new operators is still a challenging
process. A training module has been designed to provide the tools to create and execute computer-based training sessions that
can teach new operators specific functions of a large and complex real-time system. This embedded training module design has
been implemented at the Naval Research Laboratory (NRL) in a Navy command and control (C2) environment. The training
module uses an X Windows/Motif-based graphical user interface, as found in a typical modern workstation, for operational
consistency. For any particular application or module within a large system, a training coordinator can define a series of step-
by-step instructions with graphical aids such as highlights, images, and video, plus realistic scenarios, for learning how to use
the application. A special scripting language, the Presentation Authoring Language (PAL), has been devised to set a standard
method of defining the necessary components of a training session. Actual training sessions have been created for other C2
software modules developed at NRL, as well as sessions for the Fleet training schools for major functions of the Navy Tactical
Command System-Afloat (NTCS-A) and Joint Maritime Command Information System (JMCIS).

14. SUBJECT TERMS 15. NUMBER OF PAGES

Training Real-time systems Reconstruction Training sessions 38
Command and control Software Scenario 16. PRICE CODE

Embedded training Computer Scenario generation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-891
Prescribed by ANSI Std 239-18

298-102i

CONTENTS

I INTRODUCTION..I

REQUIREMENTS 2
* GENERAL DESIGN APPROACH .. 4

EXAMPLE APPLICATION: THE TRAINING MODULE FOR JMCIS .7

| RESULTS.1 9

FUTURE DEVELOPMENT AND APPLICATIONS .21

I SUMMARY.23

ACKNOWLEDGMENTS .. 24
REFERENCES .24

GLOSSARY.2 5
I APPENDIX A-PAL Command Descriptions .27

APPENDIX B-PAL As Hypertext Markup Language (HTML) Extensions . .33

I
I

I

I iii

EMBEDDED TRAINING TOOLS FOR LARGE REAL-TIME SYSTEMS

INTRODUCTION

Modern real-time computer systems combine sophisticated graphical displays with powerful
analytical tools and advanced data manipulation techniques. The advancement of computer
technology has occurred at a fast pace, especially in the graphics workstation and personal computer
arena. An open-system architecture is available on very fast graphics workstations, and modern
window-based graphical user interfaces (GUIs) with a variety of menu structures allow many
applications to be integrated, executed, and displayed simultaneously on one machine. The
complexity and capabilities of these systems are increasing rapidly, which may seem overwhelming to
the first-time operator or the experienced operator who must learn new functions. These modern
user interfaces are easier and more intuitive than the character-based commands of operating systems
of the past, yet a systematic and organized approach to on-line training of new operators on these
large advanced systems is needed in the software development community. User's manuals and on-
line help functions are beneficial, of course, and they can aid in deciphering the terminology and
functionality of the system being trained, but they rarely offer a step-by-step approach to getting
started or example sessions to accomplish specific tasks.

A set of training tools that are embedded in a large real-time system could provide the needed
systematic approach, and two basic capabilities are necessary. The first is the capability to execute a
training session made up of a series of steps, or "frames," that instruct a new operator on how to start,
setup, and use an application or module on the system. The second is the capability to create a
training session from scratch by defining a series of these frames made up of textual instructions,
graphical aids such as arrows, colored area highlights, images related to the system or function being
trained, and graphical feedback of correctly executed system functions, plus realistic scenarios of
events handled by the real-time system. Both capabilities are part of the overall set of software that
we here call a training module. The first capability would be the only portion accessible by the
trainee. The training coordinator, instructor, or training development team would have access to both
capabilities.

If the training sessions are designed in a well-thought out manner, and simple procedures are
included in introductory sessions and more complex procedures are included in advanced sessions,
new operators can follow a systematic approach to learning how to use the system, without having to
figure out how to navigate the system by trial and error. A training module like this could decrease
the possibility of a new operator giving up or being reassigned to other duties because of the initial
overwhelming complexity.

An embedded training module design has been initially applied to the on-line training of new
operators of the Navy Tactical Command System Afloat (NTCS-A) and the Joint Maritime Command
Information System (JMCIS). An early version of the Training Module has been developed at the
Naval Research Laboratory (NRL) and has been successfully integrated within the NTCS-A and is
widely deployed. The Training Module has also been deployed with the new JMCIS systems. The
development of the Training Module is ongoing at NRL to provide an embedded on-line training
capability for the Navy's future command and control systems [1]. The design approach is also

Manuscript approved July 19, 1995.

1

L.'CtLzLL3I LUf LLP IVJLrJUUcer 3
applicable to the on-line training of other military command and control systems, and with some
enhancements for the specific application area, many other large real-time systems. This design can
also be applied to the creation of general presentations for military briefing purposes or classroom
lectures for training school environments, especially when connected to a large screen display.

A special processing language called the Presentation Authoring Language (PAL) has been
devised to establish a standard method of textually defining the necessary session components of a
computer-based training session or presentation. Training coordinators can define a series of step-
by-step instructions, which generate pop-up text windows, and they can determine the title and text
for each instruction and set the position on the screen where these text windows will appear during a
training session. Along with the instructions, comments can be made about the system function being
taught, the current state of the system, or the past event being analyzed. Graphical images may be
linked to the text windows, as well as other multimedia elements such as voice, sound effects, and full-
motion video. Also, in the case of a map-based Navy command and control display, highlights in the
form of arrows, colored geographic areas of interest, and highlights of particular naval track symbols
can be made to further enhance the training session or point out specific events or geographic areas
(e.g., a colored arrow highlight pointing to a naval port of interest on the background map). In
addition, actions such as specific scenarios and events can be driven from the training session, with
timing features that control when various components of the session appear or become active (e.g.,
the arrow stays visible for 10 seconds then disappears). Each session component has a specific
command syntax for defining all the information necessary for synthetic creation and display on the
screen.

In addition, a scenario generation capability has been developed and integrated with the Training
Module to provide the ability to create dynamic training scenarios that simulate ship, air, submarine,
and land track movement on the map display and generate events pertinent to the training. This
Scenario Generator feature allows for further realism in the training sessions, and timing features
allow the simulation to occur at real time, faster than real time, or slower than real time. A scenario is
created by the training coordinator in the training session generation portion of the training module,
and it is then inserted in the appropriate places in the session. The scenario is played out when the
training session is run by a trainee.

REQUIREMENTS

To establish minimum requirements for the training software module, we should first make some
basic assumptions. We assume that we have basically two types of users of this software: the trainer
and the trainee. The trainer is a person responsible for training one or more users on the operation,
functionality, and use of a software function, module, or entire system. Trainers, or "training
coordinators," may base their training sessions on some standard training procedures, laboratory
workbooks, or training school guidelines, or on the actual "User's Manual." In addition, they may
design their own sessions using their own creativity as a guide. This all depends on the system and its
complexity and the organization of which they are a part. Trainees, or students, are people who are
required to learn how to use a new software function or module or operate an entire system. We
assume that the system is large enough to require at least a user's manual of some sort to get new
operators started. Any small, simple, or commonly known software function (e.g., a basic
computerized calculator) would not require a training session to learn how to use it. We also assume
that the system being trained contains a multitude of options with various possible paths of execution,
i.e., it is nonlinear in nature (not a batch system). Typically, in modern systems, the system has a
topic-oriented, menu-based structure for navigating through the various functions and options.
Working with these basic assumptions, the requirements and general approach to designing an
embedded set of training tools can be d&scussed.

l

1) r),--. Pr-trirlZ Aldfr-rA_

Embedded Training Tools for Large Real-Time Systems

Training software needs to be embedded, but be clearly distinct from the real-time mode.

The first requirement of training software is that it is embedded, that is, an integral part of the
system for which it will train new operators. The executable software must be resident in the system
and must be able to be executed along with other functions and modules of the entire system, thus
requiring an open system with simultaneous processing abilities. The training software must not clash
with the real-time operations of the system, and a clear distinction needs to be evident between
training and real-time modes, such as a banner designating training mode and labeling and color-
coding the training windows. Switching between modes must be quick and easy.

Training software development and maintenance needs to be done on a system with a similar
configuration as the destination system.

The training software must be developed and maintained on a system with similar characteristics
as the destination (operational) system, including but not limited to the same operating system, a
compatible hardware platform, the same GUI software, and the same or nearly same set of application
software that the training module will address. For example, in the case of training for the JMCIS
system, the development system must have the same version UNIX operating system, a UNIX-based
workstation with a large color graphics monitor, adequate memory and storage capacities, the X
Windows and Motif graphical user interface software, and the latest version of the JMCIS software
including the tactical chart display, various database managers, and communications processes.

Training software should have a simple and concise GUI.

To keep the creation of the training sessions as straightforward as possible for the training
coordinators and instructors, the GUI should be simple and concise, as well as user-friendly, and the
number of available session components should be small. Standard guidelines should be followed
for the user interface. The necessary session components include

* Text windows, for the training instructions and annotations
* Graphical elements such as arrows, rectangles, circles, and symbols, for highlighting specific

objects or areas of interest pertinent to the training
* Graphical images such as photographs, diagrams, and system screen copies that illustrate or add

to the instruction being given
* Action elements that cause specific events to take place relevant to the training (e.g., processes

that drive a scenario or change the background map in a Navy C2 system).

Optional session components that use modern digitized multimedia software techniques, although not
necessary to get the job done, can add to the overall presentation of the training. These include

* voice instructions that are produced automatically at each instruction
* full-motion video clips that are run from a session window
* sound clips that are used for special effects or emphasis.

Training software should have the same GUI as the destination system.

The training module should have the same or similar GUI as the system for which it is providing
training. This guarantees a consistent look and feel and less confusion when a trainee goes back and
forth between the system functions and the training module. It is useful, however, to have a visual
cue, such as a different background color for training windows, to differentiate the training windows
from the real-time system function and application windows. One step further along GUI lines, the

3

A4 L'CffltJI a r traf IrI'us.,UUCt 3

training module should have an equal or higher level of user friendliness than the real-time system.
If the embedded training software is more difficult to run than the system itself, then there is really no
point in using that embedded training in the first place.

Training software should allow branching, or nonlinear, execution of training sessions. 3
A training session that is linear would allow only step by step progression, from start to finish, or

the reverse. As in the case with user's manuals, the trainee may already know a certain topic or
procedure and may skip ahead in the manual to the next topic of interest or different procedure to be I
learned. In the same manner, the training module must allow a trainee to skip a frame or series of

frames that contain already known or previously covered material without losing the continuity of the
training session. The trainee may also need to go back to a previous frame to review some material.
Providing the option to branch to more detailed information on a particular topic or procedure is also
necessary and desirable. Conceptually, this can be thought of as three types of branching: ahead,
backwards, and sideways. Branching ahead or backwards should be designed into the training I
module itself, whereas branching sideways depends on the training topics or procedures and would be
set up by the training coordinator. The coordinator would decide which topics would warrant the
provision of more details, if desired by the trainee, and would set up these branches by highlighting a
word or phrase in a frame that, when selected, would cause a link to the detailed frame(s), with a link
back to where the trainee left off.

The various requirements for the training features of a specific system depend on the application U
area, so the potential list of requirements is endless. But this list of requirements is general enough to
apply to all types of embedded training. The real power of the embedded training sessions to be
produced comes not from the components themselves, or even how flashy the graphics may be, but
from how the training coordinators and training development teams use the advanced features
available to them to create cohesive, informative, simple to use, and understandable instructions to
train their new operators.

GENERAL DESIGN APPROACH

Distinction Between Training Mode and Real-time Mode

The design of an embedded training module for large real-time systems began with looking at a U
particular system, but it can be applied conceptually to any large real-time system. The aspects of the
system that are real-time need to be preserved while a training session is being run. In other words,
going from training mode to real-time operating mode has to be quick and straightforward, I
especially in crisis or demanding situations. This means that the training module needs to be
embedded (i.e., tightly integrated with the system software) but it must allow the system's real-time
operations to continue uninterrupted in the background. Attention must be paid to what real-time |
processes are going on in the particular system for which training is being developed. System
resources cannot be degraded or "hogged" by the training module, and the training module must take
advantage of every available "training" or "off-line" feature that is already built into the system. For |
instance, in the case of NTCS-A and JMCIS, the track database (TDB) manager (Tdbm) process is
always running, and it will be processing real-time track data on an event-by-event basis. The
database itself has an area specifically designated for "simulated" or "non real-time" tracks that is
usable by additional applications, such as the training module. These simulated tracks for training
are managed by the same Tdbm that is handling the real-time tracks, but there is no contention, and
both track types can be displayed and used in the same manner. Contention or conflicting data could
occur if, for instance, a training module were to use the real-time tracks portion of the TDB for its
simulations. Numerous problems are possible here, especially with automatic track correlation. So,

Trn-ic P "ti fr o -4-)f

Embedded Training Tools for Large Real-Time Systems

in general, it is best to follow as many design guidelines and use as many features applicable to
training as possible that are already available in the destination system.

Components of a Training Session

Before starting to design a training module, we asked what various components would make up a
session and how they would be represented. From those answers we designed a sample session using
a basic text editor. We first envisioned the conceptual components of a training session, as illustrated
in Fig. 1, and translated those components into command elements of a character-based processing
language. We realized that a session could be generally applied to on-line presentation and briefing
purposes as well as embedded training, thus the name of this language became the Presentation
Authoring Language (PAL). A session is a named file made up of a series of PAL building blocks
called frames. Each frame contains objects and actions. The possible objects are text windows,
highlights, and images. The possible actions are timing actions and process spawn actions. The text
window object is defined by a title, screen position, size, and text. The text window is the first main
element that is seen when starting a session. Every text window should have directional buttons for
stepping through the session. The initial design has Next and Previous buttons, but a later design will
have buttons for branching: Ahead, Backwards, and Branch (sideways to other topics). At a
minimum, the highlight objects that should be defined by PAL are Arrow, Rectangle, Circle,
Polygon, Track, and Symbol. These objects can be used to highlight particular elements on the
screen. For example, the arrow highlight could point to a moving ship symbol of interest, and a
polygon highlight can enclose a certain geographical area of interest. Others may be added at a later
stage. The image objects possible are digitized photographs, graphical diagrams and charts, and
system screen displays (screen dumps), all possibly from different sources or of different image
format types. The timing actions are Pause for pausing a session for a number of seconds, Freeze for
stopping a specific spawned process during the session, and Timeout for controlling the duration of
display of highlight and image objects. These timing actions would most likely be used for a
presentation that is to be run automatically, rather than for a manually executed training session. The
process spawn actions include a general Spawn action that basically allows any application to be
started and run automatically at a certain point in a training session. Some specific process spawn
actions that were specified for the Training Module include the Replay action and Map action. The
Replay action is used for running a Replay File of reconstructed tracks or Scenario File of simulated
tracks for a specified time period during a session, that is from the specified start Date Time Group
(DTG) to the end DTG. The Map action is for changing the system's background map center and
width at a desired point in the session to allow automated pan and zoom functions.

Run Training Session Capability

The first step in the design process of the Training Module itself was to develop a simple user
interface to select the Session File, and to develop. the parsing procedure necessary to read and
convert the character-based PAL commands into the training module components. All training
session components are defined by entering the proper PAL commands in an ASCII text Session File
with an editor, with the results being checked by the trainer when test-running the Session File. When
the trainer has finished editing and the session is complete, the trainee can run the Training Session
File. We call this capability the Run Training Session program. Procedures were developed for
sizing and placing text windows on the screen, creating and placing highlights and image graphics on
the screen, and linking the frame data together, using an X Windows-based GUI. The basic user
interface for the trainee while running a session consists of training windows that contain text
instructions plus four buttons: Next, Previous, Images, and Exit. Following intuition, the trainee
presses Next to go forward through the session, Previous to go backward to the previous frame, Image
to view an image relevant to the current frame, and Exit to quit the current session. In the case of the

5

Dennis Patrick McGroder

Training Module for NTCS-A and JMCIS, an embedded change map procedure was needed, and
integration with the JMCIS Chart and the Reconstruction Module [2], developed at NRL, was needed
for a fully dynamic C2 system training module.

TITLE

POS -- V -

SIZE -

TEXT

TEXTWINDOW

KPrevious | Next ma a | Exi

Highlights

Geographical Display

IMAGE

Actions

Center, Width

Fig. 1 - Components of a training session

Training Session Generation Capability

The initial training module design only allowed the execution of a previously created Session File
which was typed in by hand in an editor, using the PAL. The next step was to design a Training
Session Generation capability that allows a training coordinator or instructor to type the Frame text in
a frame definition window, automatically place each frame at desired screen locations with the mouse
and cursor, and setup each highlight and graphical image with a GUI that allows easy placement of
these items. In the case of the Training Module for NTCS-A and JMCIS, procedures were designed
for the trainer to set desired maps for specific frames and define the scenario replay information and
constraints, if needed for that session. The session generation software creates PAL commands
internally, and when the trainer wants to save a session file, everything defined up to that point will be
saved in a PAL Training Session File. To do this, the trainer does not have to know the specific PAL
commands. Thus, PAL can become a standard, but does not need to be learned as a language like
other third and fourth generation computer languages. In a sense, PAL is similar to the Navy
standard Over The Horizon Track GOLD (OTH-T GOLD) message format that is used for
intercomputer track data transmission and the scenario generation capability of the Training Module,
discussed later in this report.

Or- Lesson 3 1 al

This is the JMCIS Support TDAs session.
You will learn the following functions:

1) Pimtracks 5) Screen KILO
2) Overlays 6) Four Whiskey
3) Sites 7) Gridded Fields

V4) Track Groups

6

Embedded Training Tools for Large Real-Time Systems

Presentation Authoring Language (PAL)

A standard set of command key words has been established to represent the various components
of an embedded training session or an on-line presentation or briefing. These commands are used to
create a Training Session File or Presentation File. The command key words are interpreted by a
parsing procedure of a training module or presentation module. The use of capitals for text and
slashes as field separators is the text format standard, as used in the Navy standard OTH-T GOLD
message format and other Navy computer message formats.

Future versions of PAL and the Training Module will use command syntax similar to the
recognized standard Hyper Text Markup Language (HTML) [3] used in Hyper Text applications,
and this version of PAL will be presented as an HTML extension. This way, sessions developed in
HTML by other applications will be usable in this Training Module, and the Training Module will be
enhanced by the extra document formatting and Hyper Text linking features of HTML. These
Hyper Text linking features would fulfill the requirement for branching within the Training Module.
The trainer could set up these branches through a Hyper Text mechanism by highlighting a key word
or phrase in a frame that, when selected, would cause a link to the detailed frame(s). Table 1 is a list
of PAL command definitions with their associated parameter names. Appendix A describes the PAL
commands in more detail, and Appendix B gives the suggested PAL extensions to HTML.

EXAMPLE APPLICATION: THE TRAINING MODULE FOR JMCIS

The Training Module being developed at NRL for the Navy's future C2 system, JMCIS, serves
two purposes. First, it provides the ability for a trainer to create training sessions for the JMCIS
system. Second, it provides the ability to conduct these training sessions by a student or trainee who
is learning how to use JMCIS. The training sessions may be created within an operational JMCIS at
sea or at a shore facility. A broad range of training can be created and conducted, from simple
beginner training sessions for basic JMCIS system functions, such as a core JOTS (Joint Operational
Tactical System) or track management functions, to dynamic event-driven operational training
containing tactics, analysis, and assessment development. Specific sessions may be used for a number
of purposes, such as JMCIS functionality training, JMCIS User's Guides, Navy course material
(student guides and lab workbooks), course lecture material using large-screen projection, and
command briefings and presentations. An early version of the Training Module has been integrated,
tested, and released with the NTCS-A and JMCIS systems, and has begun to be used at a number of
shore sites [4]. Further discussion of the Training Module in this report refers to that being
developed for JMCIS.

Training Module Integration with JMCIS

The Training Module follows the JMCIS integration guidelines inherent in the Common
Operating Environment (COE) and Integration Standard (IS) that has been determined for all JMCIS
software developers [5, 6]. The training sessions are created within JMCIS, and all functions and
modules of JMCIS are available to the trainees and the training developers as they create the sessions.
The Training Module is available from a top level menu of JMCIS; JMCIS core software such as the
Chart service, the Tdbm service, and the X Windows and Motif GUI with the standard Navy User
Interface Specifications (UIS) [7] are used by the Training Module via the Application Programmer
Interface (API) [8]. API library functions for using the Tdbm and Chart services, plus the Motif and
X Windows libraries, are called by the Training Module. Therefore, the Training Module is a true
embedded module. Figure 2 shows the separate levels of the JMCIS COE.

7

Table 1 - PAL Commands and Parameters

COMMAND DEFINITIONS

Object: Frame

FRAME FRAME/
ENDFRAME ENDFRAME/

Object: Text Window
TEXTWINDOW TEXTWINDOWfTextWindowNumber/
TITLE TITLE/TextWindowTitle/
POS POS/ScreenX/ScreenY/
SIZE SIZE/NumberCharsfNumberLines/
TEXT TEXT/TextWindowLine[l]

TextWindowLine[2] ...

TextWindowLine[n] /

Object: Highlight
ARROW

CIRCLE
RECT
POLY
TRACK
SYMBOL

Object: Image
IMAGE

where n <= 20

ARROW/ObjectNumber/Direction/Lat/Lon/Color/
where Direction = N, E, S, W, NE, SE, SW, or NW

CIRCLE/ObjectNumber/CenterLat/CenterLon/Radius/Color/
RECT/ObjectNumber/Lat/Lon/Length/Width/Color
POLY/ObjectNumber/NumPoints/Latl/Lon 1/.../LatN/LonN/Color
TRACK/ObjectNumber/f'rackName/Color/
SYMBOL/ObjectNumber/SymbolType/Lat/Lon/Color/

IMAGE/ImageType/ImageFilename/ImageFileFormat/X/Y/
where ImageType 0 = Stored System Slide (Screen Image)

ImageType 1 = Graphical Image (Photo, Illustration)

Action: Timing
FREEZE FREEZE/
PAUSE PAUSE/NumberSeconds/
TIMEOUT TIMEOUT/Object/ObjectNumber/NumberSeconds/

Action: Process Spawn
SPAWN SPAWN/ModuleName/Argl/Arg2/ ... /ArgN/
REPLAY REPLAY/Filename/FreezeDTG/Ratio/Delay/TimeOrder

/UseTdbm/UpdateTdbm/PlotSymbols/PlotAltitudes
/PlotHistories/HistoryLength/UseBitmaps/ShowLOS/

MAP MAP/Lat/Lon/Width/
CHANGEMAP CHANGEMAP/OnorOff/

See Appendix A for more detailed descriptions of these PAL commands and examples of their use, and

Appendix B for the suggested PAL extensions to HTML.

8 Dennis Patrick McGroder

I
I
I
1

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

Embedded Training Tools for Large Real-Time Systems

JMCIS Common Operating Environment

JOTS Functions & TDAs

OSS TDAs
JMCIS

Software OpDec Module
Se mentsI ~~~~~~~~~Security Admin

Segments Reconstruction Module S ystem Admin U
T DB Admin Groups

> Training Module = | JMCIS Operator

Application Programmer Interface

JMCIS Core Services

JMCIS COE X Windows and Motif Style Guide

UNIX Operating System
Common Hardware Engine Sun DTC-2,

HP TAC-3, etc

Fig. 2 - JMCIS Common Operating Environment

To create dynamic training scenarios for more realistic training sessions, the Training Module
uses Replay, a submodule of the Reconstruction Module, and Scenario Generator, two other JMCIS-
based applications developed at NRL. The events that drive the system during the more complex
training sessions originate from real track data archived by the Reconstruction Module or through
simulated track data created with the Scenario Generator. The embedded Training and
Reconstruction modules are referred to as JMCIS Segments when integrated. Figure 3 shows how
these modules are related and fit in with the overall JMCIS Client/Server Architecture.

Currently, the JMCIS system is learned by new operators through whatever paper bound user's
manuals [9] that are provided by the developers, plus those materials that are developed at Fleet
training schools. The goal of the Training Module is to enhance these forms of training. Through
the use of the Training Module, training developers can easily provide a complete on-line manual of
training sessions for all JMCIS functions that would be similar to the bound versions, plus additional
sets of sessions that take advantage of the dynamic real-time aspects of the systems for the various
types of operators and tactical areas of interest.

Running a Training Session

The trainee or student needs to know the name(s) of the training session to be run. A selection
window comes up first when the Run Session program of the Training Module is started, and a
Training Session File is selected from a list of sessions. After that, the trainee merely reads the
information in the training windows and follows the instructions given in each frame of the training
session. Figure 4 shows the Run Training Session window (Fig. 4 (a)) plus a sample training window
(Fig. 4 (b)). The instructions may be to select specific JMCIS options, input proper data, and perform
desired actions. When all tasks of one frame are completed, the trainee presses the Next button and
continues. Highlighting aids such as arrows, symbols, icons, annotations, photographic imagery, or
graphic windows may be placed on the JMCIS display as part of the session. If there is a scenario or
replay file attached to the session, it will play according to predetermined timing settings at particular
relevant frames in the session. The trainee watches the trainee scenario play out, and waits for the

9

10 Dennis Patrick McGroder

next frame window to appear for instructions. At any point, the trainee can go to the Previous frame
for review (as far back as desired). The trainee can also exit at any point by pressing the Exit button
and may start the session over again or start a new session.

JMCIS Training Module ------ Scenario Generator I
Segments

(NRL) Replay (Reconstruction I
l l ~~~~~Submodule)

Application Programmer Interface

JIVICS cms Message Tdm Chart [A~lerts Menu Scrt
MCore H | Processing Executive

Services

~~~~~~~I

Track Tactical
Database Display

Fig. 3 - JMCIS Client/Server Architecture

Creating a Training Session 3
The trainer first determines the content of the training sessions and scenarios to be used. The

training instructions are prepared in advance, preferably in a rough outline form on paper, inserted |
into the system with the Training Module's Training Session Generation program, and presented on
the standard JMCIS tactical display through a series of orderly text instruction windows and
illustrative graphics, optionally linked to a dynamic training scenario. These training windows will I
provide specific information and instructions that direct the trainee to select specific JMCIS options,
input data, and perform certain actions. Groups of training sessions can be organized in various
ways, but it is intended that each session be devoted to one unique system function or module, or
general topic.

Figure 5 shows the Training Session Generator window. The file management options under the
File pull-down menu allow the trainer to create a new session, edit a session, run a session to test it,
save a completed session in the session file directory, and delete a session. The editing options under
the Edit pull-down menu allow the trainer to insert a new frame after the current frame, remove the
current frame, and clear the frame text and associated files (to start over). The Find pull-down menu
is still under development; it will allow the user to find any word or group of words in the text of the
session. The tools available to the trainer under the Tools pull-down menu are Replay, Scenario
Generator, and Slide Archiver. Replay and Scenario Generator are explained in the next section.
The Slide Archiver allows the user to save JMCIS screen slides used in training sessions on a tape, for

easy transfer between systems. 3



Embedded Training Tools for Large Real-Time Systems 11

ssion ; I 1 I II

(a)

fI - I I � , � : I I
11 � I :� �, � Eisenh p �� Iower Leaves , art �: �:,-j .� -1E-� _31

(b)

Fig. 4 - Run Session File Window and Training Window



Dennis Patrick McGroder

Training
File Edit Fi n< Tools

- - - -. ..... .. ., I..

Fig. 5 - Training Session Generation Window

Placing the Text Window, Highlights, and Images

When a training frame is completed by entering from 1 to 20 lines of text, the trainer needs to
place the text window for that frame at the desired screen location. This is the location at which the
window will appear when the session is run by the trainee. The trainer also may want to add
highlights in the Chart display area and include pop-up images that enhance the individual training
step. The trainer merely presses the Place button, and the Text Placement window with four buttons
(Ok, Highlights, Imagery, and Cancel) appears on the screen, as shown in Fig. 6. Pressing the
Highlights button brings up the Highlights window, which the trainer can use to place any number of
arrow highlights on the JMCIS Chart, as shown in Fig. 6. Other types of highlights are still under
development and will be added at a later stage as requested by users. By pressing the Imagery button,
the Image File Setup window pops up, which allows the selection of JMCIS Slide images and graphic
images from various sources. The trainer selects all images to be displayed in the Available Imagery
list, and presses the Add button to put them in the Images to Display list. When the Place button is
pressed, all images selected appear on the screen, and the trainer places them in appropriate positions
on the screen, and presses the Ok button to complete the Imagery setup (in Fig. 6, only one image
was placed). When the Ok button is pressed in the Text Placement window, it freezes the placement
of the text window, arrow highlights, and imagery. These elements will all appear exactly where they
were placed when the training session is run.

12
I
I
i
I
I

I

I

1 ;



Embedded Training Tools for Large Real-Time Systems

Fig. 6 - Text Placement window with arrow highlights and image placement

Replay Within a Training Session

The Replay tool allows the trainer to associate an existing replay file of dynamic OTH-T GOLD
track data with the current frame. The replay file may be obtained from the Tdbm Logger, which
can be run during JMCIS real-time operations to obtain large amounts of actual real-time track data.
Replay files may be merged, sorted, and edited by means of various options of the Reconstruction
Module [2]. The replay file may also be a scenario file created using the Scenario Generator, which
is accessible in the Training Module. With the Scenario Generator, the trainer can create simulated
tracks to generate a scenario from scratch or provide a simulation enhancement to an actual Fleet
exercise by merging real and simulated tracks. Either way, when a frame that has a replay associated
with it is reached in the session, the tracks will replay on the Chart display according to predetermined
timing parameters, then will "freeze" at the Freeze DTG previously specified by the trainer. Then the
next training window will be displayed.

Selecting Replay from the Tools pull-down menu brings up the Replay File Setup window, shown
in Fig. 7, which allows the trainer to select a replay file from a list of all files currently archived in the
replay file directory. The trainer then establishes display and timing parameters for the replay.
Display options include a Use Track Data Base Tracks option, which causes the tracks to be updated
in the JMCIS track database. Other display options affect the display of the replay tracks. The Plot
Histories option allows the track histories to be displayed during replay. The Line of Sight option

13



Dennis Patrick McGroder

Fig. 7 - Replay File Setup window

displays line of sight range circles around tracks that have altitude data. The Show Altitudes option
displays altitude lines of air tracks. The Use Bitmaps option allows the display of realistic track
symbol icons during replay. The timing options allow the replay to be done at real-time speeds (1:1
replay ratio) for short, intense scenarios or careful examination of specific events, or faster than real-
time (e.g., 60:1 replay ratio) for a quick review of positions. The trainer must determine the Freeze
DTG as a point in time that the replay will stop for the current frame, running from the Freeze DTG
of the previous frame. Otherwise, the replay file will run from start to finish, which may be desired in
some cases.

Scenario Generation Within a Training Session

The Scenario Generator is a tool that can be accessed from the Tools pull-down menu within the
Training Module's Training Session Generation program to create dynamic training scenarios
containing definition and movement of ship, air, sub, and land tracks over time, plus descriptions of
events pertinent to the training. The main application window is shown in Fig. 8.

The Scenario Generator is integrated with the JMCIS Track Data Base Manager, and an option
allows all simulated tracks to be updated in the JMCIS track database as the scenario runs. These
tracks are updated independently in the system as "Terminal Simulated" tracks, a separate area from
the "Local" or "Global" "Real-Time" tracks, so there is no clashing. Also, an option is available to
place an "X" in front of all simulated track name labels to designate them as exercise or simulated
tracks to avoid confusion. The Scenario Generator is also integrated with the JMCIS Chart to draw
the simulated track symbols, the line of sight range circles, and formation range rings.

U A 150 NII el --� �

14



Embedded Training Tools for Large Real-Time Systems

Scenario Generator I I1

Fig. 8 -Scenario Generator Main Application window

Multiple categories of simulated tracks can be created with the Add Scenario Track Window,
shown in Fig. 9. The possible force designations include Friendly (Blue), Neutral (Green), Hostile
(Red), and Unknown (Yellow). The available platform types include Ship, Air, Sub, Land, and
Unknown Air or Missile. A scenario is created by first defining the starting time and positions of all
the units to participate in DTG format. Simulated tracks are added one at a time, where initial position
data is entered by clicking a position on the chart or by typing in the latitude-longitude values. Other

Add _enario Track ___I __ . i_._
-- I_ Add Scenario Track I l I II

Fig. 9- Adding a Scenario Track

15



16 Dennis Patrick McGroder

initial navigation data including course, speed, altitude or depth, and climb rate or descent rate are U
also entered for new tracks. The CV Air button brings up the window shown in Fig. 10. An aircraft
carrier (CV) can be selected as the next scenario track to be added, plus a set of any number of
various classes of aircraft to be included on that CV in the scenario. The CV and its aircraft tracks will I
appear in the Scenario Tracks List of the main window, but the associated aircraft will not appear on
the JMCIS Chart until they are "launched" from the CV with the Launch option. 3

c -' ' ' -Al: ---- 

I 
__ .

,1: isle I .L ' '. 1 . ei
Eli . . i!L i ! , .i' Lo.
| ail!. .|3' !:L

., , | 9 ..11 .1111 .. 9.
eL ! :!i i! A! 'i ..9i

' lImIifil . ' E-2C 1
E0RGE WASHINGTON i | | E c ; i l

lull 11 lo alla iambi
1 i ,u' '' .,,,, |
. iI s is .1 ." 11 hi a.
!1111 a. .,ii. !!
! !119 a. . G

l. 5'i l,
eiu.5 in.|. !!1E !! ! i' " ! ! :' S.11 ; , i. I

11'! .11.11' 1. .L:
| 11 |

__|

Fig. 10-CV Air window

1

I
I
I
U

I
I
I

I
'I

I
I
I
I



Embedded Training Tools for Large Real-Timne Systems

A Formation Editor can be used to set up a formation among several tracks, where one track in
the group whose initial position is already defined is designated as the reference track. Then each
track is added to the formation by giving a relative bearing and range from the reference or by
merely clicking on the chart, thus defining initial positions. Bearing and range are easily set and
modified with the aid of a formation range rings display, which is similar to a maneuvering board, as
shown in Fig. 11. Each track in the formation inherits the course and speed of its reference track. In
the example in Fig. 11, the Mt Whitney is the reference track, and the Eisenhower and Compte De
Grasse are in formation with the Mt Whitney as they leave Norfolk, each having the same course and
speed as the Mt Whitney (160, 020). Formations can be made or broken at any point during the
scenario generation by using the Join and Break formation editor options. It is envisioned that this
option could be extended to allow simulated tracks to be in formation with actual real-time tracks that
are being updated in the system, to provide a simulation enhanced Fleet exercise capability.

Fig. 11 -Formation Editor with tracks in formation

The scenario is then advanced and new positions are generated by using the Advance options.
Two navigation methods, Great Circle and Rhumb Line, are possible for advancing tracks, and the
method is set once in the beginning. The tracks can be advanced to their next positions by clicking
a position on the chart, entering latitude-longitude values, or by various time projection options, as
illustrated in Fig. 12. All tracks can be advanced by a particular time amount (e.g., 15 minutes)
based on their current course and speed, to a particular point in time (such as 150800Z JUL 95), or to

the latest time that will synchronize all tracks to the same point in time (Sync option). Also, new
formations may be made and current formations can be broken during the scenario advancement
phase. The trainer can also add "narrative/opnote" or "event" text for time stamping events into the
scenario.

17



18 Dennis Patrick McGroder

The scenario can also be played in "freeplay" mode, that is, advanced automatically by the
computer, using the computer clock to generate time-stepped advances. We call this option Scenario
Freeplay, and tracks can be allowed to move along their courses at a real-time pace based on the
computer clock, and faster or slower than real-time based on a timing ratio and update time step (Fast
Motion and Slow Motion options). Changes in navigational data (course, speed, altitude, depth) can
be easily entered as the freeplay is running, and their effect will take place at the next update time £
step. The freeplay can be paused and restarted at any time in the scenario generation. In addition, at
any time, the scenario generated so far can be quickly reviewed (Review option) and saved in a file
(Save).

When a scenario is determined to be complete, the simulated track data can be saved in an OTH-T
GOLD formatted Scenario File and then replayed when the training session is run. The scenario I
filename must be given, along with any timing constraints, in the Replay Setup portion of the
Training Session Generation program. Here, the scenario is linked to a particular frame in the
session, and if the training is to be done at a real-time pace, then real-time replay is set. Otherwise, a U
faster than real-time pace is "set" for track movements between the frame "freeze" points, where
further instructions are followed or other trainee actions can be taken. Also, scenario files can later
be manipulated by editing the simulated track data, merging multiple scenarios, or merging a I
scenario with real reconstructed track data occuring in the same time period. These merges of
reconstructed tracks with additional tracks in the scenario can be used to present, during exercise
debrief, the actual events and ground truth track movements that occurred, where the track data that U
were reported in real- time may have been incomplete or in error.

Automated Training Sessions and Presentations I
When a completed training session or presentation is going to be observed by a large group of

people, such as in a classroom situation or staff briefing, it may be desirable to have the session run 3
automatically without operator intervention. A single operator or trainee may also use this automatic
capability to get a quick overview of the material without actually following the session instructions.
This option is available in its initial stages in the Training Module's Run Training Session program. I
Each frame is displayed for a fixed amount of time before the session advances automatically to the
next frame (as if the user pressed the Next button). Images have their own designated amount of
time for display. These time amounts are easily changed as the session is running by using the slider
bars to speed up or slow down the running of the session.

Recording of Operator Actions

For a trainee to be "graded" on his/her performance in completing a training session by
comparing actions with the set of correct responses for that session, it is useful to be able to record all
the operator interactions while on the system. In addition, this is useful for the trainer, who can I
record all correct actions for a session and then play back this "recording" during a training session to
show the trainee what should be done. This recording could be used by the trainer in the beginning
of a session to introduce the trainee to the material, or it could be used at the end of the session for U
the trainee to check his/her results or actions against the "correct" ones, just as correct answers are at
the end of the chapter in text books. 3

The JMCIS Macro Recorder, as it is currently known, is under development to fulfill these
requirements. Similar to Macros on personal computers, this recorder can save all operator actions,
from menu selections to button presses to keystrokes, from the moment the recorder is started to the I



Embedded Training Tools for Large Real-Tine Systems

NO AOLTS 2 71922:15Z SEP4 9

system chart sews Comms Support Mis Help

Q d L *uni Evn mas I Apl

ZOOM j IN OUT PAN - CNTR IREORAWI ~~~~LL4i,~o0UN W tLR0 0715W 2.7

Fig. 12 - Scenario Advancement

moment it is stopped. The recorded actions are saved in a file in a special recorded information
format, and that file is later selected to play back the recorded actions. During this play back, all
JMCIS and module functions that were executed during the recording are actually re-executed
automatically in the play back, with realistic pauses and response times between actions.

RESULTS

The Training Module has been used to create many presentations and demonstrations to the
Navy Fleet and C2 software development community, with very positive feedback. Some have taken
the task of creating usable training and presentation sessions for various activities, such as Navy
exercise analysis and reconstruction, laboratory training at Fleet training centers including real-time
track management, coordination, and data fusion, and for the C41 Staff Watch Officer Course. In
addition, the Training Module has been integrated and tested with the NTCS-A and JMCIS, along
with the Reconstruction Module, and it is currently installed aboard most Navy combatants, including
all that have NTCS-A version 2.0.10.5 or later, or any version of JMCIS.

Training Session for the Reconstruction Module

A training session has been developed for those involved with exercise reconstruction and
analysis. The session will introduce the analyst to the Reconstruction Module in NTCS-A and JMCIS,
and demonstrate its usefulness and interaction with the Warfare Assessment Module (WAM),
developed at the Naval Warfare Assessment Division in Corona, CA. Both the Reconstruction Module
and WAM use archived track data and present a dynamic replay of track movements on the map with

19



Dennis Patrick McGroder

event annotations. However, the most common input data of each program is different, so conversion
software is used to allow WAM data to be replayed and displayed by the Reconstruction Module, and
to allow archived OTH-T GOLD data from NTCS-A and JMCIS to be replayed and displayed by the
WAM. This training session will show the analyst how to use the two modules together to get a more
complete reconstruction, based on track data collected in real-time, and track data determined later to
be "ground truth," based on more complete information. By running the Reconstruction Module and
the WAM side by side, comparisons can be made between the analyzed "ground truth" track data and U
the track data seen by the Battle Group Commander in real-time during the exercise. Instructions are
given for how to collect, merge, and edit the track data, how to convert from one input data format to
the other, and how to use the various display and track and event history options in the I
Reconstruction Module. Also included are some lessons on basic NTCS-A and JMCIS features and
how to create a final presentation for a post-exercise debrief. I
Training Sessions for NTCS-A and JMCIS Functions

Training sessions have been developed for teaching how to use various functions of the NTCS-A I
and JMCIS systems. The user's manuals for these systems have been used as a guide to get started, as
well as the training manuals written and used at Fleet training centers, such as the Tactical Training
Group Atlantic and Pacific, at Virginia Beach, VA. Sessions for the Force Over-the-horizon Track I
Coordinator (FOTC) have been developed to instruct operators on the use of the many FOTC-related
functions in NTCS-A and JMCIS. Training sessions have also been created for other modules and
applications being developed at NRL, namely, the Reconstruction Module, the Operations Deception I
Module, and the Scenario Generator.

Training Sessions for the Staff Watch Officer Course

Training sessions are currently being developed for the Staff OTH/C4 I Watch Officer Course
(SWOC), a training course given at the Tactical Training Group Atlantic. This course has been used 3
to train staff watch officers on the NTCS-A system (and later JMCIS). It is taught with a lab
workbook, with five labs on general system topics, which describe the instructions for the relevant
system functions. The lab workbook is being converted into a series of on-line training sessions that
will be done in a particular order. The first completed lab session, "Lab #1 Display Options," will
familiarize the SWO with some basic NTCS-A and JMCIS display options, focusing on Map Options
and Plot Control Options. The second lab session, "Lab #2 Support Options," focuses on the battle
management support features and the tactical decision aids (TDAs) available under the Tracks, I
Support TDAs, and TDA menus of NTCS-A and JMCIS. Dynamic training scenarios, not available
with the lab workbook, are being included with these sessions to simulate a more realistic operating
environment. For example, the second lab session contains a small simulated battle group that crosses I
the Mediterranean. A search and rescue (SAR) plan using the Expanding Square pattern has been
created by the SWO trainee with the SAR Planning TDA, as shown in Fig. 13. In the scenario, a
search aircraft is launched by the Kennedy to assist the Mississippi in locating a missing helicopter. I
The aircraft follows the search pattern, which was set by the SWO trainee, to locate the helicopter
before returning to the Kennedy, thus adding an element of dynamics and realism to an otherwise
static session. Dynamic scenarios like this will be used in the rest of the labs for the SWOC, as well as I
for other relevant training materials that will be converted. The addition of dynamics to training
sessions makes them more interesting and requires more focused trainee involvement.

Ui

* I

20



Embedded Training Tools for Large Real-Time Systems

UUT PAN i CNIH REDUKAW LL413IN01138E i4M

Fig. 13 - SAR Planning in the Staff Watch Officer Course Training Session

FUTURE DEVELOPMENT AND APPLICATIONS

Training Module Enhancements

It has become clear with the initial use of the Training Module that occasions will exist for
trainees to stop working in the middle of sessions, either to take a break, or at the end of the work
day. There needs to be a way of making any point in the session directly accessible, to allow the
trainees to come back to where they left off. The trainees will merely open the sessions they were
running previously, and instead of starting by pressing Next in the first frame, they will select from a
list of frame titles to go directly to their desired starting point. This enhancement has been designed
and is relatively straightforward to implement.

Another feature being discussed is the organization of Training Session Directories that will store
sets of training sessions according to the application or type of system module or function to which
they pertain. JMCIS is organized into two major menu structures, and it would make sense to have
the training sessions for JMCIS functions and TDAs organized in the same way. For example, if the
trainee is going to run a session on the "Pimtracks" option under the "Support TDAs" Chart level
menu, then to select the correct session, the trainee would select the "Chart Menu" directory, then the
"Support TDAs" directory, and finally, the "Pimtracks" training session. This way, as more training
sessions are created for the system, the trainee will be able to go quickly to the desired training topic
without having to scroll through a long list of sessions for the whole system.

Probably the most important enhancement that has been requested by users is some form of
remedial checking or grading system for the training sessions. Just as the lab workbooks of the SWO
Course have Skill Tests at the end of each lab session, the Training Module needs features that allow
the trainees to be tested on their knowledge of the material just covered. This implies that either a set

21



Dennis Patrick McGroder

of "results" or "correct answers," depending on the training topic or function, needs to be set up in U
advance by the trainer (i.e., creator of the training sessions) and stored in the system. Also, trainees
need a way of checking their work against these results. One method currently available in the
system is to provide visual feedback through the use of the JMCIS slides. Here, a JMCIS function I
window with correct entries or an image of the results of trainee actions on the Chart are displayed to
the trainee with a previously created JMCIS slide. However, this does not provide any real automatic
checking within the system; it is merely visual. Eventually, a thorough method of testing the trainees U
at the end of sessions will be necessary, with direct feedback on their performance, and these methods
are currently being designed.

Related Training Applications

Several more advanced applications come to mind when considering all the features available
with the Training Module and Scenario Generator. A team training application is an obvious next
step. Applications for simulated enhanced exercises and dynamic plan simulation are also natural
outgrowths of the embedded training module concept. In most of these areas, it is necessary to have
a computer-linked network for training, separate from the network for real-time operations, plus a
way to have multiple scenario generators running simultaneously to simulate actual movements and
actions.

The Scenario Generator developed at NRL can be set up to allow all simulated tracks to appear
on all displays in one local area network (LAN) mode, which is useful for team training aboard one
platform. Taking this one step further to a wide area network (WAN) mode, several players on
several platforms could generate simulated tracks that would appear on all displays of the WAN.
Plans are currently under way to design a Virtual Training Network within the JMCIS architecture to
allow these types of simulations. All track updates and tactical training events would be I
communicated to all the players in a team training environment, with automatic synchronization of
time critical events across the network. 3
Multiple Scenario Generators for Team Training

For team training applications to be possible for a single platform, it will be necessary to have I
multiple scenario generators running simultaneously on the LAN aboard ship and synchronized to
one master clock. A team member at each display terminal could be controlling a certain group of
assets in the training scenario, such as Blue Ships or Red Air, as in the over-simplified illustration in I
Fig. 14. For team training among a group of platforms, a high-speed training WAN needs to be
implemented for synchronizing all the Scenario Generators on the network and passing the track
updates and the array of possible scenario events among the various platforms. The referees, or I
neutral members in this training environment, can be generating a predesigned scenario of simulated
tracks, or Background Scenario, and all the team members can then respond interactively as events
unfold. This background scenario will be the one that controls the master clock (in case the clocks I
on the separate computers on the training network are slightly off), and will provide for the
synchronization of all team members' events and actions. The team members will have their own
Scenario Generator (SG1, SG2, SG3, SG4 in Fig. 14) in Freeplay mode, and will enter changes in I
navigation data (course, speed, altitude, exact position, etc.) as the scenario advances. A lot of design
work needs to be done before realizing these team training goals, but the ground work has been laid
with the Training Module and Scenario Generator. |

22



Embedded Training Tools for Large Real-Time Systems
23

Fig. 14 - Multiple Scenario Generators for team training

SUMMARY

Embedded training tools are necessary in the large real-time systems of today and the future. It is
evident that embedded training will eventually be very commonplace in these systems. An important
criterion is that the embedded training itself be part of the design process when building new large
software systems. The designers should have in mind how the system will be used and how system
operators will be trained so that the training tools can be embedded intelligently and the user
interfaces for training will be user-friendly and straightforward. As long as the training module
software does not interfere with the real-time operations, complex systems will be easier to learn.
Because of the student interaction on an actual operational system, the learning curve will be greatly
reduced. This should effectively lower the overall costs of training new operators.

In the Navy C2 arena, we have developed a comprehensive package of training and presentation
tools that will enhance how the Navy does business in many areas, from Fleet exercises and
operational preparedness to training schools and command briefings. The Joint Maritime Command
Information System and the Navy Tactical Command System-Afloat are complex systems, with new
functionality and tactical decision aids being planned and added. The training of these new options
needs to keep pace with the speed of development and with the advancement of computer
technology. The Training Module developed at NRL is a very big step in this direction, with room
for extension built into the module's design and its associated command scripting language PAL, to
accommodate more sophisticated training requirements of the future.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

23 CZ:

C,
r�
:3.

1� 17

r �
CZ"



24 Dennis Patrick McGroder I
ACKNOWLEDGMENTS

The author acknowledges the contributions of NRL colleagues George M. Bulgin and Dennis T. I
Baba of Kaman Sciences for their insight, discussions during design, and software development
expertise in the implementation of the Training Module and Scenario Generator software. The author
also acknowledges Gene E. Layman, John R. Robins, and John T. Egan for their help in design and I
development and for their overall knowledge and expertise in the areas of Navy C2 and system
training requirements.

REFERENCES

1. G.E. Layman, "Embedded Training Methods For Command and Control Systems," NRL Review, I
1994, pp. 168-171.

2. D.P. McGroder, "Graphics-based Software for Embedded Event Reconstruction in Navy
Command and Control Systems," NRL Report 9365, November 1991.

3. "A Beginner's Guide to HTML," National Center for Supercomputing Applications / I
pubs@ncsa.uiuc.edu, September 1994. See the Internet World Wide Web (computer-based)
reference: http://www.ncsa.uiuc.edu/General/Internet/WVVW/HTMLPrimer.html.

4. "Training Module User's Manual," developed by NRL, compiled and prepared by Command and
Control Warfare Group Atlantic (CCWGRULANT), Norfolk, VA 23520, November 1994.

5. JMCIS Common Operating Environment (COE), Inter-National Research Institute, Inc. (INRI),
Reston, VA 22091, February 1994.

6. JMCIS Integration Standard (IS), Navy Command, Control and Ocean Surveillance Center I
Research, Development, Test & Evaluation Division (NRaD), San Diego, CA 92152-5000,
February 1994.

7. K. Fernandes, "User Interface Specification (UIS) for Navy Command and Control Systems,"
Version 1.3, Navy Command Control and Ocean Surveillance Center, San Diego, CA, December
1993.

8. JMCIS Application Programmer Interface (API) Manuals, Inter-National Research Institute, Inc.
(INRI), San Diego, CA 92131, December 1993.

9. JMCIS User's Manuals, Inter-National Research Institute, Inc. (INRI), San Diego, CA 92131,
January 1994.



Embedded Training Tools for Large Real-Time Systems 25

4-

GLOSSARY

API

COE

C2

DTG

GUI

HTML

JMCIS

JOTS

LAN

NTCS-A

OTH/C 41

OTH-T GOLD

PAL

SAR

SWO

SWOC

TDA

TDB

Tdbm

UIS

WAM

WAN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Application Programmer Interface

Common Operating Environment

Command and Control

Date Time Group

Graphical User Interface

Hyper Text Markup Language

Joint Maritime Command Information System

Joint Operational Tactical System

Local Area Network

Navy Tactical Command System - Afloat

Over The Horizon /
Command, Control, Communications, Computers, and Intelligence

Over The Horizon Track GOLD

Presentation Authoring Language

Search and Rescue

Staff Watch Officer

Staff Watch Officer's Course

Tactical Decision Aid

Track Database

Track Database Manager

User Interface Specification

Warfare Assessment Module

Wide Area Network

25Embedded Training Tools for Large Real-Time Systems



I
I
I
I
I
U

U

U

I
1

U

I
I
I
I
I
U

U

U



Appendix A

PAL COMMAND DESCRIPTIONS

Frame Definition Commands:

FRAME FRAME/

Command to indicate start of a frame, which may include TEXTWINDOW annotations, IMAGE
graphic overlays, highlights, replay actions, map settings, and timing functions. The possible
"Objects" within a FRAME include TEXTWINDOW, ARROW Highlight, Area Highlights such as
CIRCLE, RECT, and POLY Highlights, TRACK Highlight, SYMBOL Highlight, and IMAGE. The
possible "Actions" within a FRAME include REPLAY, MAP settings, SPAWN of other modules, and
timing functions such as FREEZE, PAUSE, and TIMEOUT.

ENDFRAME ENDFRAME/

Command to end a frame. Everything between FRAME and ENDFRAME will be displayed on
the screen at one time.

Text Object Commands:

TEXTWINDOW TEXTWINDOW/TextWindowNumber/

Command to start a text window definition. This command must be followed by a TITLE, POS,
SIZE, and TEXT command. Give the Text Window Number.

Example: TEXTWINDOW/5/

TITLE TITLE/TextWindowTitle/

Command to set the Title of the current text window.

Example: TITLE/Introduction to Scenario Generation/

POS- POS/ScreenX/ScreenY/

Command specifying the X,Y position at which to place the current training text window on the
screen.

Example: POS/500/200/
This will cause the training text window to pop-up near the top and center of the screen.

27



28 Dennis Patrick McGroder 

SIZE SIZE/NumberChars/NumberLines/

Command to set the size of the current text window, as the Number of Characters (width) by the |
Number of Lines (height).

Example: SIZE/55/12/ I
TEXT TEXT/TextWindowLine[ 1]

TextWindowLine[2] .
TextWindowLine[n] / where n <= 20

Command for (a) a text window of instruction steps in a training session or (b) annotations to the
events of a reconstruction or presentation. The text is created from the succeeding lines in the
command, and terminated on the last line with a "/" (slash). The position in which to place the text
window during the training session or presentation is an X,Y screen position as given in the preceding I
POS command, which is set by the user when window placement is done during session creation. The
size, in number of characters by number of lines, is given by the preceding SIZE command.

Example: TEXT/This Scenario Generation capability of the Training
Module provides the ability to create dynamic training
scenarios that simulate ship, air, sub, and land track
movement on the map display and generate events pertinent
to the training./

Highlight Object Commands:

ARROW ARROW/ObjectNumber/Direction/Lat/Lon/Color/ I
where Direction = N, E, S, W, NE, SE, SW, or NW

Command to draw a filled arrow of given Color and Direction at a given Lat/Lon position on the I
Chart. Give arrow Object Number.

Example: ARROW/3/NE/3800N/07700W/blue/ I
This will draw a blue arrow pointing in the North East direction at the chart position 3800N

07700W. The object number 3 indicates that it is the third object defined in the object list for the I
current frame in the session.

CIRCLE CIRCLE/ObjectNumber/CenterLat/CenterLon/Radius/Color/ I
Command to draw a filled circular area centered at a given Lat/Lon with given Radius in nmi

(nautical miles) and Color. Give circle Object Number. I
Example: CIRCLE/2/3400N/12030W/500/orange/

This will draw an orange circle with a center at 3400N 12030W (near Southern California) with a
radius of 500 nmi. This circle is the second object within the object list for the current frame.



Embedded Training Tools for Large Real-Time Systems 29

RECT RECT/ObjectNumber/Latl/Lon l/Lat2/Lon2/Color

U Command to draw a filled rectangular area with the top left at Latl/Lonl and the bottom right at
Lat2/Lon2. Give rectangle Object Number and Color.

I Example: RECT/2/3400N/1 2030W/3200N/1 3000W/cyan/

This will draw a cyan rectangle with the top left corner at 3400N 12030W and the bottom rightI corner at 3200N 12030W.

POLY POLY/ObjectNumber/NumPoints/Lat 1/Lon 1... /LatN/LonN/Color

Command to draw a filled polygon area with given Number of Points and given Lat/Lon3 positions and Color. Give polygon Object Number.

Example: POLY/ 1/5/3800N/07700W/3800N/07600W/3700N/07530W/3700N/07400W
/3730N/07700W/yellow/

This will draw a yellow polygon with five points and five sides. It is the first object in the object
list.

TRACK TRACK/ObjectNumber/TrackName/Color/

Command to highlight a particular named track with a larger track symbol font, which may be a
different color. Give track highlight Object Number and Color.

Example: TRACK/4/MOUNT WHITNEY/green/

This will highlight the MOUNT WHITNEY track on the chart with a green track symbol (larger
| than the MOUNT WHITNEY symbol). This highlight is the fourth in the object list.

SYMBOL SYMBOL/ObjectNumber/SymbolType/Lat/Lon/Color/

I Command to draw a specific symbol at a given Lat/Lon position, which may be any color. Give
symbol Object Number, SymbolType, and Color.

| Example: SYMBOL/7/MarineHelicopter/4200N/01600E/white/

This will draw a white Marine Helicopter symbol at 4200N 01600W. It is the seventh object inI the list.

3 Image Object Command:

IMAGE IMAGE/ImageType/ImageFilename/ImageFileFormat
/ScreenX/ScreenY/

where ImageType 0 = Stored Slide (JMCIS Screen Image)
ImageType I = Graphical Image (Photo, Illustration)

Command to refer to any graphics drawn in a JMCIS window from any application, such as
photographs, charts, diagrams, geographical areas, coverages, track histories, PIM tracks, and overlays,



30 Dennis Patrick McGroder

that are saved in an image file (graphics file). Give the Image Type, the Image Filename, and the
Image File Format (e.g., TIFF, GIF, xwd, bitmap, etc.). l

Example: IMAGE/1/E2CWITHESCORT/xwd/700/400/

This will cause a digital photograph stored in the xwd-type image file "E2CWITHESCORT" to I
pop-up on the screen at X=700, Y=400 (near the lower right of the screen).

Timing Action Commands: 3
FREEZE FREEZE/

Command to tell the replay process within the training session or presentation to "freeze" (stop
running). It could cause a window to pop up that says "PRESS TO CONTINUE" with a CONTINUE
button in order to play through the rest of the presentation or session. I
PAUSE PAUSE/NumberSeconds/

Command to tell the replay process within the training session or presentation to pause for a
given Number of Seconds, before continuing.

Example: PAUSE/10/ I
TIMEOUT TIMEOUT/Object/ObjectNumber/NumberSeconds/ |

Command to make a particular object in this frame be displayed, such as a TEXTWINDOW
comment, or an ARROW, TRACK, or Area Highlight, for a fixed Number of Seconds and then
disappear (time out). "Object" is the type of object followed by the Object Number as specified in
object creation.

Example: TIMEOUT/ARROW/3/20/ I
This will cause the arrow highlight defined in the ARROW command example above (object 3 in

the object list) to disappear after 20 seconds. I
Process Spawn Action Commands: I
SPAWN SPAWN/ModuleName/Arg 1/Arg2/. ../ArgN/

Command to spawn another module or program (process) from within the current frame. Give |
the Module Name and any command line Arguments.

Example: SPAWN/TRAINscenarioPART/-role/BlueShips/-file/BLUESHIPS.GLDS |
/-dtg/041200Z NOV 94/-nd/

This will spawn the TRAINscenarioPART program (Training Scenario Participant) and pass the |
arguments for -role as "Blue Ships," -file as "BLUESHIPS.GLDS," -dtg as "041200Z NOV 94," and
-nd (which the spawned program defines as NO DATA BASE).



Embedded Training Tools for Large Real-Time Systems

REPLAY REPLAY/Filename/FreezeDTG/Ratio/Delay/TimeOrder
/UseTdbm/UpdateTdbm/PlotSymbols/PlotAltitudes
/PlotHistories/HistoryLength/UseBitmaps/ShowLOS/

Command to spawn the Reconstruction Module's Replay option from within the Training
Module. This command is inserted in a training session file or presentation file to do a replay of real
operations or an exercise or a replay of a scenario of synthetic tracks, or a combination thereof.
Replay Ratio and later arguments are optional. Give the command line arguments for: the Replay
Filename or Scenario Filename, and optionally a Freeze DTG, and the three replay timing arguments:
Replay Ratio (e.g., 60.0 for 60:1), Replay Delay, that is, the Number of Seconds to delay between
each message (e.g., 2.0 for 2 seconds), and Replay Time Order: 0 (by MSG DTG) for replay by
message date-time-group or 1 (by Position Time), which causes sorting according to the position
time. Also give the TDB options: UseTdbm: 1 if the tracks are to be saved in the TDB at all, 0
otherwise, UpdateTdbm: 1 if the tracks are to be updated and plotted by the Tdbm for each report in
the replay, 0 otherwise, and PlotSymbols: 1 if track symbols are to be plotted by the REPLAY process
during replay, 0 otherwise (i.e., letting Tdbm do the plotting). Then give the other display
arguments: PlotAltitudes: 1 if altitude lines are to be drawn for air tracks with altitude data, 0
otherwise, PlotHistories: 1 if track history lines are to be drawn during the replay, 0 otherwise,
HistoryLength: 0 if ALL history points should be included, I if 15 points, 2 if 10 points, 3 if 5 points,
and 4 if only one most recent point, UseBitmaps: 1 if bitmap-based icons are used for track symbols,
0 otherwise, and ShowLOS: 1 to display the Line of Sight circles for air tracks, 0 otherwise.

Example: REPLAY/Filename/FreezeDTG/Ratio/Delay/TimeOrder
/UseTdbm/UpdateTdbm/PlotSymbols/PlotAltitudes
/PlotHistories/HistoryLength/UseBitmaps/ShowLOS/

MAP MAP/Lat/Lon/Width/

Command to tell the Chart Server to change the map during a training session or presentation.
The Latitude and Longitude values define the center of the map, and the Width value defines the
width (in nmi) of the map to be displayed on the screen.

Example: MAP/4200N/07600W/600/

CHANGEMAP CHANGEMAP/OnorOff/

Command to toggle the CHANGEMAP flag On or Off for the session, to tell whether subsequent
frames will cause a changed map when a new MAP command is given; 1 for On, 0 for Off is.

Example: CHANGEMAP/I/

3 1



Appendix B

PAL AS HYPER TEXT MARKUP LANGUAGE (HTML) EXTENSIONS

What follows is a list of the commands, given in Appendix A as converted to the suggested PAL
extensions to HTML. This will provide compatibility between the Training Module's sessions and
presentations and the sessions and documents produced with HTML by presentation, document
production, or other multimedia applications (such as Mosaic). By replacing the slashes of the
original PAL with spaces and surrounding the commands with the left and right brackets ( < and > )
of the HTML, the basic command syntax will be consistent. Any PAL extensions would be
considered "foreign" to other HTML-based applications (at least initially) and would simply be
ignored without causing any errors.

Add to these the commands for Hyper Text Links, or Anchors, plus those for Video and Sound,
then all other text formatting tags in HTML, and we will have a comprehensive set of commands to
define any presentation or training session that has multimedia capabilities, using Hyper Text
functionality, with map and replay dynamics. In addition, after formatting enhancements are made to
the Training Module, the HTML-based output from other applications will be readable. Take note of
the special comments (in italics).

COMMAND
KEY WORDS: USAGE:

Frame Definition Commands:

FRAME <FRAME>
ENDFRAME <ENDFRAME>

Text Object Commands:

TEXTWINDOW <TEXTWINDOW TextWindowNumber>
TITLE <TITLE>TextWindowTitle</TITLE> (already defined in HTML)
POS <POS ScreenX ScreenY>
SIZE <SIZE NumberChars NumberLines>
TEXT TextWindowLine[1]

TextWindowLine[2] 
TextWindowLine[n] (Free Format Text)

Highlight Object Commands: (Assuming a system map display)

ARROW <ARROW ObjectNumber Direction Lat Lon Color>
where Direction = N, E, S, W, NE, SE, SW, or NW

CIRCLE <CIRCLE ObjectNumber CenterLat CenterLon Radius Color>
RECT <RECT ObjectNumber Latl Loni Lan2 Lon2 Color>
POLY <POLY ObjectNumber NumPoints Latl Lonl ..LatN LonN Color>
TRACK <TRACK ObjectNumber TrackName Color>
SYMBOL <SYMBOL ObjectNumber SymbolType Lat Lon Color>

33



I
Dennis Patrick McGroder34

Image Object Command:

IMAGE

(already defined in HTML)

<IMG SRC = ImageFilename or URL>
where URL = Universal Resource Locator
We may need to add our own extension for these fields:
ImageType, ImageFileFormat, ScreenX, ScreenY
where ImageType 0 = Stored System Slide (Screen Image)

ImageType 1 = Graphical Image (Photo, Illustration)

Timing Action Commands:

FREEZE
PAUSE
TIMEOUT

<FREEZE>
<PAUSE NumberSeconds>
<TIMEOUT ObjectType ObjectNumber NumberSeconds>

Process Spawn Action Commands:

SPAWN
REPLAY

MAP
CHANGEMAP

<SPAWN ModuleName Argl Arg2 ... ArgN>
<REPLAY Filename FreezeDTG Ratio Delay TimeOrder
UseTdbm UpdateTdbm PlotSymbols PlotAltitudes
PlotHistories HistoryLength UseBitmaps ShowLOS>
<MAP Lat Lon Width>
<CHANGEMAP OnorOff>

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I


